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Abstract. We numerically investigate the structure of the basins of attraction and the nature of
the spurious attractors of the pseudo-inverse and the optimal weights attractor neural networks.
We show that the number of attractors in the optimal weights model increases as the margin
parameterκ increases, and that the basins of attraction of the stored patterns are not significantly
enlarged byκ. Moreover, the number of attractors is smaller than in the pseudo-inverse model.

1. Introduction

Despite the importance of the pseudo-inverse [1, 2] and the optimal weights [3] attractor
neural networks to the theoretical modelling of associative memory systems, little is known
about the structure of their basins of attractions and the nature of their spurious attractor
states. As pointed out by Hopfield [4], attractor neural networks can function as associative
memory devices provided that the synaptic weightsJij are specified so that a given set
of P binary patternsξl = (ξ l1, . . . , ξ lN ), l = 1, . . . , P become the attractors of the neural
dynamics

Si(t + 1) = sign

(∑
j

Jij Sj (t)

)
i = 1, . . . , N. (1)

HereSi(t) = ±1 is the state of neuroni at timet . It is usually assumed that the components
ξ li are randomly chosen as±1 with equal probability, and that the number of patterns scales
linearly with N , i.e. P = αN . The retrieval of a stored pattern, sayξl , will depend on its
proximity to the initial stateS(t = 0). However, since in general the number of spurious
attractors grows exponentially withN , a randomly chosen initial state will almost certainly
flow to one of these attractors rather than to one of the stored patterns. Hence the importance
of understanding the nature of the spurious attractors in models of associative memory.

In this paper we numerically investigate the multivalley structure of the configuration
space of the pseudo-inverse and optimal weights neural network models for both sequential
(the neurons are updated one after the other in a fixed order) and parallel (all neurons are
updated simultaneously) dynamics.

Denoting by�s the number of initial states that fall onto thesth attractor, we define
the weightWs of this attractor by

Ws = �s/2N (2)

so that
∑

s Ws = 1. To characterize the structure of the basins of attraction we evaluate the
quantity

Y =
∑
s

W 2
s (3)
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which gives the probability that two randomly chosen initial states fall onto the same attractor
[5]. If Y → 0 asN → ∞ then all the weights become smaller and smaller, while ifY

remains non-zero there are some big basins of attraction that fill a finite fraction of the
configuration space. We note that the minimum of 0< Y 6 1 is obtained for the uniform
caseWs = W∀s, while the maximum is obtained forWr = 1 andWs = 0∀s 6= r. We
calculate also the number of fixed points and cycles, denoted byNf andNc, respectively,
of equation (1). To evaluate the basins of attraction of the stored patterns we calculate the
number of states that fall onto them

Xξ =
P∑
l=1

�ξl (4)

so thatXξ/P gives the average size of the basin of attraction of a stored pattern.
For each realization of the set of stored patterns, the quantities defined above are

computed exactly using an efficient algorithm for performing the exhaustive search in the
configuration space [6]. The results are then averaged over 100 realizations. Since the
computer time needed for the complete enumeration of the statesS(t + 1) for each of the
2N statesS(t) grows exponentially withN our analysis is restricted toN 6 24.

The remainder of the paper is organized as follows. In section 2 we review briefly
the main results about the pseudo-inverse and optimal weights attractor neural networks,
and present the prescriptions used for obtaining their synaptic weights. The results of our
simulations are presented and discussed in section 3, while section 4 is devoted to our
concluding remarks.

2. The models

The weights of the pseudo-inverse attractor neural network are given by

Jij = 1

N

∑
kl

ξ ki ξ
l
j (C−1)kl (5)

where C is the correlation matrix whose elements areCkl = 1
N

∑
i ξ

k
i ξ

l
i [1, 2]. This

prescription for the weights guarantees the perfect storage of a set ofN linearly independent
patterns. Hence its storage capacity, defined as the ratio between the maximal number
of random patterns it can store and the number of neurons, isαc = 1. Thanks to the
analytical relation betweenJij and the set of stored patterns given in equation (5), several
analytical investigations of the pseudo-inverse model have been carried out. In particular,
the thermodynamics of a variant of this model, where the diagonal terms are set to zero,
was studied by Kanter and Sompolinsky [7], while the number of metastable states for the
original model as well as for the mentioned variant was calculated by Kuhlmann and Anlauf
[8]. An alternative formulation of the pseudo-inverse model is obtained by calculating the
minimal norm solution of the following set ofP linear equations [9]

1l
i = 1 l = 1, . . . , P (6)

for eachi = 1, . . . , N , where

1l
i =

1√
N
ξli

∑
j 6=i

Jij ξ
l
j (7)

is termed the stability of the componentξ li . We note that, in contrast to equation (5), this
prescription yields an asymmetric matrix of weights. Since it does not specify the diagonal
terms, we impose the additional conditionJii = 0. Moreover, as for fixedi there are
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N−1 unknowns andP equations the above prescription allows the perfect storage ofN−1
linearly independent patterns, so thatαc = (N − 1)/N = 1− 1/N .

The pseudo-inverse model, however, is not optimal in the sense that its storage capacity
is not maximal. In fact, Gardner has shown that for unbiased random patterns the maximal
storage capacity isαc = 2 [3]. The statistical properties of the ensemble of weights of this
optimal neural network can be investigated analytically by calculating the volume of the
space of weight vectorsJi = (Ji1, . . . , Jii−1, Jii+1, . . . , JiN ) that satisfy the inequalities

1l
i > κ l = 1, . . . , P (8)

for eachi = 1, . . . , N . The margin parameterκ > 0 is introduced in order to ensure that
the stored patternsξl possess finite basins of attraction. The storage capacity decreases with
increasingκ and, in particular,αc = 2 for κ = 0 [3]. The lack of an explicit, analytical
relation between the weights and stored patterns makes the analytical study of the retrieval
properties of the optimal neural network very difficult. From the perspective of a numerical
investigation, however, this is not a hindrance, since given a set of stored patterns there is
a very efficient iterative algorithm that guarantees convergence to an optimal set of weights
(if one exists) [10]: starting with a random matrix, repeatedly apply the rule

Jij → Jij + 1

N
ξli ξ

l
j (1− δij ) f (1l

i) |Ji | 2(κ −1l
i) (9)

for eachi and l until (8) is satisfied. Here|Ji | = [
∑
j 6=i J

2
ij ]

1/2 and

f (1l
i) = κ + ε −1l

i + [(κ + ε −1l
i)

2− ε2]1/2 (10)

with ε = 0.01.
We should mention that in the regime of extreme dilution, where the connectivityC

of the network satisfiesC � lnN [11], the time evolution of the overlaps between the
retrieval states and the stored patterns is given by a simple equation which depends only on
the probability distribution of the stabilities1l

i [12, 13]. The diluted versions of the pseudo-
inverse and the optimal weights models have been thoroughly studied [13, 9, 14, 15]. In
particular, for the optimal weights model, it was found that the basins of attraction of the
stored patterns vanish atκ = 0 for α 6 2 [15]. More recently, a new approach introduced
by Coolen and Sherrington [16, 17] has allowed the analytical study of the dynamics of the
retrieval overlaps for the fully connected Hopfield model. Their method, however, does not
seem to be applicable to models for which there is no analytical prescription for writing the
synaptic weights in terms of the stored patterns.

3. Analysis of the results

In the following we will refer to the pseudo-inverse prescription (5) as the PGD model [2],
and to its variant withJii = 0 as the KS model [7]. An unexpected result of our simulations
is the finding that, in the scale of the figures presented in the sequel, the results for the KS
and the alternative formulation of the pseudo-inverse (6) were indistinguishable, in spite of
the considerable difference in the weight matrices. Hence we will present the results for
the KS model only. In order to prevent the vanishing of the argument of the sign function
in (1) we have simulated the optimal weights and KS models for even values ofN , and the
PGD model for odd ones. We will focus mainly on the sequential dynamics; the results for
the parallel dynamics will be considered briefly in the end of this section.

In figure 1(a) we presentgf = 1
N

ln〈Nf〉 as a function of 1/N for α = 1
2 (optimal

weights and KS) andα = 1
3 (PGD). The largest size isN = 24 for the optimal weights and
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Figure 1. (a) Size dependence of the exponentgf

in 〈Nf〉 = exp(Ngf) for the sequential dynamics of
the following models: PGD (♦), KS (�), and optimal
weights withκ = 0 (O), 0.5 (M) and 0.8 (◦ ). Note
that α = 1

3 for PGD andα = 1
2 for the other models.

The data for 1/N = 0 are the theoretical predictions
[8]. (b) The exponentgf for the sequential dynamics as
a function ofα for N = 21 (PGD) andN = 22 (other
models). The full symbols are the extrapolated values
for 1/N → 0 and the full lines for the pseudo-inverse
models are the theoretical predictions [8]. The broken
line is the theoretical prediction for the Hopfield model
[18, 19]. The convention is the same as for (a).

Figure 2. Size dependence of〈Y 〉 for the sequential
dynamics. The parameters and convention are the same
as for figure 1(a).

KS models, andN = 21 for the PGD model. These data indicate an exponential growth of
the number of fixed points for all models,

〈Nf〉 = cα exp(gαN) (11)

where, for each model, lncα is given by the slope of the straight line andgα by its intersection
with the vertical axis. The analytical prediction of Kuhlmann and Anlauf [8] for 1/N → 0
is also shown in that figure. The poor agreement for the PGD model is due to the small
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values ofP used in the simulations (P = 3, 5 and 7), since the analytical calculation is
based on the assumption that bothP andN go to infinity for any non-zeroα. Due to the
limitation N 6 24, these extrapolations can be carried out for a few values ofα only. So,
in order to better appreciate theα dependence ofgf , as well as of the other quantities we
consider in this work, we have also presented the data for small size networks. Figure 1(b)
shows the dependence ofgf with α for N = 22 (optimal weights and KS) andN = 21
(PGD). The full curves for the pseudo-inverse are the theoretical predictions [8], and the full
symbols are the extrapolated values for 1/N → 0. As already mentioned, the disagreement
for small α was expected; the disagreement for the KS model forα ≈ 1 is probably due
to the fact thatαc = 1− 1/N ≈ 0.95 for this model. The number of spurious fixed points
is then much smaller in the optimal weights model and grows much slower than for the
pseudo-inverse. Besides, for the optimal weights model the number of spurious fixed points
does not tend to the saturation valuegf = ln 2 as the storage limit is approached. We note
that, in the limitN → ∞, αc = 2, 0.96 and 0.66 for κ = 0, 0.5 and 0.8, respectively.
Interestingly, there is a surprisingly good agreement between the extrapolated data for the
optimal weights model withκ = 0 and the theoretical prediction for the Hopfield model
[18, 19]. Finally, we should mention that the calculation of〈lnNf〉 yields no significant
differences from the results presented above. Similarly, we have calculatedgc = 1

N
ln〈Nc〉

for the optimal weights model (since the weight matrix is not symmetric, even the sequential
dynamics can lead to cycles). We have found that though the number of cyclic attractors
seems to increase exponentially withN , its number is about ten times smaller than the
number of fixed points. Moreover, cycles of length two are much more numerous than
cycles of larger length.

The dependence of〈Y 〉 on 1/N for fixed α presented in figure 2 shows that there is a
major qualitative difference between the optimal weights model withκ = 0 and the other
models. This result is not affected by different choices of the parameterα. According to the
physical interpretation ofY , the tendency of〈Y 〉 to a non-zero value asN →∞ suggests
the existence of few attractors with huge basins of attraction, i.e.�s ≈ cs exp(N ln 2) with
0 < cs 6 1. We note that〈Y 〉 will vanish even if�s increases exponentially withN , say
�s ≈ exp(Nas), provided thatas < ln 2. As expected, we have found that for all models
〈Y 〉 decreases monotonically with increasingα, indicating thus the reduction of the size of
the basins of attraction of all attractors.

Figures 3(a) and (b) show the dependence ofbξ = 1
N

ln(〈Xξ 〉/P ) on N and α,
respectively. Although〈Xξ 〉 increases exponentially withN , the extrapolation toN →∞
yields bξ < ln 2, so the weights of the stored patterns vanish in that limit. In contrast
to the findings for the diluted model [15], the basins of attraction of the stored patterns
do not vanish forκ = 0. As pointed out by Kanter and Sompolinsky [7], the basins of
attraction of the stored patterns in the PGD model vanish (i.e.Xξ/P = 1) for α > 0.5 in
the thermodynamic limit. The data shown in figure 3(b) indicate this tendency for the PGD
model. In particular, the extrapolations forα = 1

3 and 2
3 point to a very sharp transition at

α = 0.5. As for the optimal weights model, the margin parameterκ plays a surprisingly
minor role in the determination of the size of the basins of attraction of the stored patterns:
for α > 0.5 there is practically no differences between the results forκ = 0 andκ = 0.5.

We turn now to the analysis of the parallel dynamics. In this case, the models with
symmetric weight matrices (PGD and KS) can present cycles of length two, besides the usual
fixed points [20]. Of course, the results concerning the number of fixed points, figure 1(b),
are not changed, since the fixed points must be the same for both dynamics. Their basins of
attraction, however, undergo great changes mainly due to the appearance of the new cyclic
attractors. In figure 4 we presentgc as function ofα. The positive diagonal term of the
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Figure 3. (a) Size dependence of the exponentbξ
in 〈Xξ 〉 = P exp(Nbξ ) for the sequential dynamics.
The parameters and convention are the same as for
figure 1(a). (b) The exponentbξ for the sequential
dynamics as a function ofα for N = 21 (PGD) and
N = 22 (other models). The convention is the same as
for figure 1(a).

Figure 4. The exponentgc in 〈Nc〉 = exp(Ngc) for
the parallel dynamics as a function ofα for N = 21
(PGD) andN = 22 (other models). The convention is
the same as for figure 1(a).

PGD weight matrix (Jii ≈ α [7, 8]) prevents the appearance of cycles in this model. For
the other models, however, the cycles outweigh the fixed points, except for KS near its
storage capacity limit, as can be seen by comparing figures 4 and 1(b). Similar to the serial
dynamics, we have found that in the optimal weights model the cycles of length two are
the predominant ones. The reduction in the size of the basins of attraction of the stored
patterns resulting from the appearance of the cycles becomes more pronounced for largeα,
but there is no noteworthy difference between the behaviour pattern ofbξ for the parallel
and the serial dynamics.
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4. Conclusion

The results of the previous section indicate that the number of spurious attractors in the
optimal weights model is smaller than in the pseudo-inverse model. The number of attractors
increases withκ and, perhaps because of this increase, the basins of attraction of the stored
patterns are not greatly enlarged by the margin parameterκ as one would naively expect.
In fact, the gain is so small that, in view of the drastic reduction of the storage capacity, it
becomes hard to justify the use ofκ 6= 0 for the fully connected neural network. It seems
thus that the role of the margin parameterκ is simply to smooth out the neighbourhood of
the stored patterns [15], with no great consequences to the size of their basins of attraction.

To conclude, we mention that the extrapolations toN → ∞ of gf from its N

dependence in small networks (N 6 24) provide a reliable quantitative base line for
analytical calculations of the number of metastable states of the optimal weights model.
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